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1 Fibrations

In the exercises we used the extension problem to motivate the study of cofibrations. The
idea was to allow for homotopy-theoretic methods to be introduced to an otherwise very
rigid problem. The dual notion is the lifting problem. Here p : E → B is a fixed map and
we would like to known when a given map f : X → B lifts through p to a map into E

E

p

��
X

f //

>>|
|

|
|

B.

(1.1)

Asking for the lift to make the diagram to commute strictly is neither useful nor necessary
from our point of view. Rather it is more natural for us to ask that the lift exist up
to homotopy. In this lecture we work in the unpointed category and obtain the correct
conditions on the map p by formally dualising the conditions for a map to be a cofibration.

Definition 1 A map p : E → B is said to have the homotopy lifting property (HLP)
with respect to a space X if for each pair of a map f : X → E, and a homotopy H : X×I → B
starting at H0 = pf , there exists a homotopy H̃ : X × I → E such that ,

1) H̃0 = f

2) pH̃ = H.

The map p is said to be a (Hurewicz) fibration if it has the homotopy lifting property with
respect to all spaces. �

1



Since a diagram is often easier to digest, here is the definition exactly as stated above

X

in0

��

f // E

p

��
X × I

H̃
;;x

x
x

x
x

H // B

(1.2)

and also in its equivalent adjoint formulation

X H

��

f

##

H̃

  B
B

B
B

EI

e0

��

p∗ // BI

e0

��
E

p // B.

(1.3)

The assertion that p is a fibration is the statement that the square in the second diagram
is a weak pullback. i.e. it satisfies the existence but not uniqueness property of a pullback.
This diagram will eventually lead to a characterisation of fibrations in terms of a universal
example. For the moment we prefer to continue with the general discussion.

The reference in the definition to the Polish mathematician Witold Hurewicz stems from
his pioneering work [1]. We have included it parenthetically due to the fact that there are
other types of fibrations considered in the literature. For instance Serre fibrations are the
maps which have the homotopy lifting property with respect to all CW complexes. These
other types of fibrations will not be discussed here, and for us the word fibration will always
mean ‘Hurewicz fibration’.

Example 1.1

1) For any space X, the unique map X → ∗ is a fibration.

2) A homeomorphism is a fibration.

3) For any pair of spaces X, Y , the projection prX : X×Y → X is a fibration. A fibration
of this form is said to be trivial.

4) Less obviously, we will show later that the exponential map exp : R→ S1 is a fibration.
In particular not every fibration is trivial.

5) Set E = I × {0} ∪ {0} × I and let p : E → I be the projection onto the first factor.
This map is not a fibration, since there is no lift of the identity starting at (0, 1). �

Lemma 1.1 If p : E → B is a fibration, then its image is a union of path components of B.

Proof If e ∈ E and l ∈ BI is a path starting at p(e), then the HLP grants a path l̃ : I → E

such that l̃(0) = e and pl̃ = l. In particular, any point of B connected by a path to a point
in p(E) has a preimage in E.
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Note that we are not asserting that a fibration need be surjective. This point is often
misrepresented in the literature.

Example 1.2

1) For any space X, the unique map ∅ → X is a fibration.

2) The inclusion X ↪→ X+ is a fibration. �

However, Lemma 1.1 does state that a fibration p : E → B surjects onto each path component
which intersects its image non-trivially. Since a consequence of Proposition 1.2 below is that
the restriction of p to any path component of B is again a fibration, we see, especially in the
case in which B is locally path-connected, that there is often little harm in assuming that p
is surjective.

We use this observation mainly as motivation to introduce some standard terminology.
Given p : E → B we call E the total space of the fibration and B the base space. Given a
point b ∈ B we call Eb = p−1(b) ⊆ E the fibre over b. In the case that B is equipped with a
basepoint ∗, we write F = E∗, and call it the typical fibre of p. The relation between these
objects is clarified below. We intuitively think of E as being ‘larger’ than B, essentially
an amalgam of B and the typical fibre F (compare the two fibrations S1 × Z → S1 and
R→ S1).

Proposition 1.2 The following statements hold.

1) If p : E → B and q : Ẽ → E are fibrations, then the composite pq : Ẽ → B is a
fibration.

2) If pi : Ei → Bi, i = 1, 2, are fibrations, then the product p1 × p2 : E1 × E2 → B1 × B2

is a fibration.

3) If
P //

q

��

E

p

��
A // B

p

(1.4)

is a pullback square and p : E → B is a fibration, then q : P → A is a fibration.

Proof 1) Suppose given the solid part of the following diagram

X
(1)

Y W T

""

M
I

H

%%

f

""

(2)
AA

  A
A

ẼI

e0
��

// EI

e0

��

// BI

e0

��
Ẽ

q // E
p // B.

(1.5)

The pair of qf and H pose a homotopy lifting problem for p, and since p is a fibration, the
dotted arrow labeled (1) can be filled in so as to make the right-hand side of the diagram
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commute. Subsequently, the pair of f and (1) pose a lifting problem for q, which can be
solved to yield the map labelled (2), and this map also solves the original problem.
2) This is clear since homotopies of products are products of homotopies.
3) Assume given a lifting problem in the form of the solid part of the next diagram

X

in0

��

f // P

��

// E

p

��
X × I

H
//

;;

g j m o
r

v
H̃

;;x
x

x
x

x
A //// B.

p
(1.6)

The right-most dotted arrow can be completed since p has the HLP by assumption. Then
the pair of this new map and H specify a unique map H̃ : X × I → P into the pullback
space. Checking directly using the uniqueness of the maps granted by the pullback we see
that H̃0 = f .

A consequence of part 3) of the proposition is that if A ⊆ B, then the restriction of a
fibration p : E → B to A is a fibration which we will denote

pA = p| : EA = p−1(A)→ B. (1.7)

For a general map f : X → B, we’ll prefer to write

f ∗E = X ×B E → X (1.8)

for the pullback fibration.
To end this section we’ll leave the reader with some simple observations.

Example 1.3

1) Let p : E → B be a surjective fibration. Assume that f : X → B is inessential. Then
f lifts to E. In particular, if B is contractible then p admits a section. More generally,
if i : A ⊆ B is a subspace inclusion and i ' ∗, then there is a lift ĩ : A → E. This is
equivalently a section of EA → A, even though A itself may not be contractible.

2) Assume that p : E → B is a fibration and p ' q. Then there is a map θ : E → E such
that pθ = q.

3) Assume that p : E → B is a surjective fibration over a nonempty space B, and that
for some b ∈ B, the fibre p−1(b) is path-connected. Then E is path-connected if and
only if B is path-connected. �

Example 1.4 Let p : E → B be a fibration with typical fibre F . Then

cat(E) ≤ (cat(B) + 1)(cat(F ) + 1)− 1. (1.9)
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Proof Fix a categorical cover U1, . . . , Um+1 of B and a categorical cover V1, . . . , Vn+1 of F .
For each i = 1, . . . ,m + 1 let J i be a null homotopy of the inclusion Ui ↪→ B and consider
the diagram

EUi

in0

��

// E

p

��
EUi
× I

Ki

55jjjjjjjjjj
// Ui × I Ji

// B

(1.10)

where EUi
= p−1(Ui). By applying the HLP we get the map Ki, and setting ki = Ki

1 we get
ki(EUi

) ⊆ F . Next, for each j = 1, . . . , n+ 1, put

Wij = k−1i (Vj) (1.11)

to get an open cover Wi1, . . . ,Wi(n+1) of EUi
. Since the EUi

cover E, so do the sets Wij. We
show below that these (m+ 1)(n+ 1) sets constitute a categorical cover of E.

Now, for each j = 1, . . . , n+ 1 choose a null homotopy Lj of the inclusion Vj ↪→ F . Then
we get a null homotopy M ij of the inclusion Wij ↪→ E by pasting together the homotopies
in the following diagram

∗

��
Vj

>>||||||||
// F

Lj
⇐

��
Wij

//

ki
>>||||||||
Ei
� � // E.

Ki
⇐

(1.12)

Explicitly

M ij(e, t) =

{
Ki(e, 2t)

Lj(ki(e), 2t− 1)
e ∈ Wij, t ∈ I. (1.13)

2 The Mapping Path Space

Definition 2 Given a map f : X → Y we define its mapping path space Wf to be the
pullback in the square

Wf

πf

��

qf // Y I

e0

��
X

f // Y.

p (2.1)

In particular
Wf
∼= {(x, l) ∈ X × Y I | f(x) = l(0)} (2.2)

and the maps πf : Wf → X and qf : Wf → Y I which appear in (2.1) will be our favoured
notation for the the projections onto the first and second factors, respectively. �
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Now, with f : X → Y fixed we get a map f̃ : XI → Wf as that induced by the diagram

XI
f∗

��

f

""

f̃

!!B
B

B
B

B

Wf

πf
��

qf // Y I

e0

��
X

f // Y.

p

(2.3)

Proposition 2.1 A map f : X → Y is a fibration if and only if the associated map
f̃ : XI → Wf has a right inverse λ : Wf → XI .

Proof The pullback square defining Wf specifies a homotopy lifting problem for f . Thus if
f is a fibration, then there exists a solution λ which makes the next diagram commute

Wf qf

��

πf

##

λ

!!C
C

C
C

XI

e0

��

f∗ // Y I

e0

��
X

f // Y.

(2.4)

We check that
πf (f̃λ) = e0λ = πf , qf (f̃λ) = f∗λ = qf (2.5)

which implies that f̃λ = idWf
. This gives us the forwards implication.

Conversely, assume that λ is a right inverse to the map f̃ . Note that this implies the
equations

e0λ = (πf f̃)λ = πf , f∗λ = (qf f̃)λ = qf . (2.6)

To complete the proof we need to show that f has the homotopy lifting property with respect
to a given space A. So assume given the lifting problem on the left below

A H

��

α

""

  A
A

A
A

XI

e0

��

f∗ // Y I

e0

��
X

f // Y

A H

��

α

""

θ

  A
AA

AA
AA

A

Wf

πf
��

qf // Y I

e0

��
X

f // Y.

p

(2.7)

Since the square on the right is a pullback, the maps α,H determine the indicated map
θ = θ(α,H) : A→ Wf . Define

H̃ = λθ : A→ XI . (2.8)

Then
e0H̃ = e0(λθ) = πfH̃ = α, f∗H̃ = f∗(λθ) = qfθ = H. (2.9)

In particular H̃ solves the lifting problem on the left of (2.7).
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This proposition supplies the universal example we alluded to in the opening section of this
lecture. A consequence is that f : X → Y has the HLP with respect to all spaces if and only
if it has the HLP with respect to Wf . The parallels with the theory of cofibrations are now
manifest: Wf is dual to the mapping cylinder Mf , and the lift λ : Wf → XI is dual to the
retraction X × I →Mf .

Definition 3 Let p : E → B be a fibration and p̃ : EI → Wp the map constructed in (2.3).
Any choice of section λ : Wp → EI of this map is said to be a lifting function for p. �

Example 2.1 In this example we revisit Proposition 1.2 and as an exercise rederive the
results there in terms of lifting functions.

1) Let f : X → Y and g : Y → Z be fibrations, and choose for them lifting functions
λf : Wf → XI and λg : Wg → Y I . There is a canonical sequence of maps

Wf
1×g∗−−−→ Wgf

f×1−−→ Wg (2.10)

and if (x, k) ∈ Wgf , then

λg(f(x), k)(0) = πg(f(x), k) = f(x). (2.11)

In particular (x, λg(f(x), k)) ∈ Wf . Define λgf : Wgf → Y I to be the map

λgf (x, k) = λf (x, λg(f(x), k)). (2.12)

We check easily that this is a lifting function for gf , and conclude that this composition
is a fibration.

2) Let pi : Ei → Bi, i = 1, 2, be fibrations. Then there is a canonical homeomorphism
Wp1×p2

∼= Wp1 ×Wp2 , and choices of lifting functions λ1 for p1 and λ2 for p2 induce a
lifting function for p1 × p2. Thus p1 × p2 : E1 × E2 → B1 ×B2 is a fibration.

3) Let p : E → B be a fibration. Given a map f : X → B let q : X ×B E → X be its
pullback. Then there is a commutative cube in which the left-hand, right-hand and
bottom faces are are pullbacks

Wq
//

$$II
III

III
II

��

Wp

!!B
BB

BB
BB

��

XI //

��

BI

��

X ×B E //

q
$$JJ

JJJ
JJJ

JJ
E

p

!!C
CC

CC
CC

C

X
f // B.

(2.13)

Checking the universal property we see that the top face of this cube is also a pullback,
so in particular there is a homeomorphism Wq

∼= XI ×BI Wp. This can also be checked
directly. Choose a lifting function λp : Wp → BI for p and let λq be the composite

Wq
∼= XI ×BI Wp

1×λp−−−→ XI ×BI EI ∼= (X ×B E)I (2.14)

to get a lifting function for q.
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4) The last example is clarified somewhat by replacing the map f with a subspace inclusion
A ↪→ B. In this case EA ⊆ E, and the map WpA → Wp is injective. If λ : Wp → BI is
a lifting function for p, then λ(WpA) ⊆ AI , so we get a lifting function for pA simply
by restriction.

5) Finally we consider the trivial fibration prX : X×Y → X. There is a homeomorphism
WprX

∼= XI × Y , so a lifting function for this fibration is furnished by any choice of
map s : Y → Y I satisfying s(y)(0) = y. In particular the map sending each point to
the constant path at that point will do. �

Lest these examples lead the reader to believe that lifting functions are only useful in prov-
ing technical results, here is another example to highlight the power of having a universal
example.

Example 2.2 Let p : E → B be a map between metric spaces E,B. Assume that p has the
homotopy lifting property with respect to all metric spaces. Then p is a fibration. We can
see this by first observing that the compact-open topology on BI agrees with the topology
of uniform convergence, since B is metric, and so is itself metrisable, since I is compact. It
follows that the subspace Wp ⊆ E × BI is also metrisable, and so we can thus find a lifting
function for p by assumption. �

Example 2.3 Let p : X̃ → X be a map with unique path lifting.

X̃

πf
��

qf // XI

e0

��
X̃

p // X.

p (2.15)

Finally we’ll end this section with a technical result which is the dual of Proposition 1.2
from the exercises. Note, however, that the symmetry is not elegant, and we must enforce
additional assumptions on the base space in order to obtain a dual statement.

Proposition 2.2 If p : E → B is a surjective fibration over a locally path-connected space
B, then p is a quotient map.

Proof Form the mapping path space Wp and let q : Wp → B be the map (e, l) 7→ l(1).
Then the diagram

EI p̃ //

e0

��

Wp

π
��

E
p // B.

(2.16)

commutes by construction. The map e0 is a quotient map since it has a section. Similarly
the map p̃ is a quotient map, since any choice of lifting function λ for p is a section. It
follows now from the commutativity of (2.16) that p is a quotient map if and only if πp is.
Thus we will be done if we can show that q is a quotient map.

So suppose that A ⊆ B is a nonempty set such that q−1(A) is open in Wp. Fix a point
b ∈ A and a preimage e ∈ p−1(b). Also let cb ∈ BI be the constant path at b. Now, if
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U ⊆ B is an open neighbourhood of b, then U I is naturally embedded in BI which carries
the compact-open topology. Since Wp is topologised as a subspace of E × BI , it is not
difficult to see we can choose the neighbourhood U such that ({e} × U I) ∩Wp ⊆ q−1(A).

Let U0 ⊆ U be the path-component of b. Note that this set is open in B since B is locally
path-connected. We claim that U0 ⊆ A, which, if true, will show that A is open, and so
complete the proof. To see the claim let b′ ∈ U0 be any point and choose a path l ∈ U I such
that l(0) = b and l(1) = b′. Then (e, l) ∈ ({e} × U)I ∩Wp and q(e, l) = b′. Hence b′ ∈ A,
and we can see the claim is true.

Example 2.4

1) Every CW complex is locally path-connected [2]. Every (topological) manifold is
locally-path connected. In particular, Pr. 2.2 applies to all fibrations over such spaces.

2) Let Q be the rationals in its standard topology and Q the rationals in the discrete
topology. The identity Q → Q is a fibration, but clearly not a quotient map. Of
course Q is not locally path-connected. �

3 Mapping Spaces and Fibrations

In this section we study the interactions between fibrations and function spaces. The main
tool for this is the use of adjunction, and it is not surprising to see some local compactness
requirements. The main results are Propositions 3.1 and 3.1.

Proposition 3.1 Let B be a pointed space and p : E → B be a fibration with typical fibre
F . Then for any locally compact space X, the postcomposition map

p∗ : C(X,E)→ C(X,B) (3.1)

is a fibration with typical fibre C(X,F ).

Proof Consider the following two diagrams

K

in0

�� ��

// C(X,E)

p∗
��

K × I //

99s
s

s
s

s
C(X,B)

X ×K
in0

�� ��

// E

p

��
X ×K × I //

99rrrrrr
B.

(3.2)

The left-hand diagram is a lifting problem for p∗. The right-hand diagram is obtained from
the left-hand side by adjunction. Since X is locally compact, all the maps in this diagram
are continuous, and since p is a fibration, the dotted arrow can be filled in. The adjoint of
this filler is a map K × I → C(X,E) which then solves the lifting problem in the left-hand
diagram.

Proposition 3.2 Assume that j : A ↪→ X is a closed cofibration in a locally compact space
X. Then for any space Y , the precomposition map

j∗ : C(X, Y )→ C(A, Y ) (3.3)

is a fibration.
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Proof Consider the next two diagrams

K H

%%

f

##

$$I
I

I
I

I

C(X,A)I

e0
��

// C(A, Y )I

e0
��

C(X, Y )
j∗ // C(A, Y )

K × A
1×j
��

� � in0 // K × A× I
1×j×1

�� H[

��

K ×X

f[ //

in0 // K ×X × I
H̃
L

L

%%L
LL

Y.

(3.4)

The left-hand diagram represents an assumed lifting problem for j∗. The right-hand diagram
is obtained from the left-hand side by adjunction. Since A ⊆ X is closed, it is locally
compact in the subspace topology, so all the maps in the right-hand diagram are continuous.
Moreover, since j is a cofibration, the dotted arrow marked H̃ on the right-hand side can be
filled in. The adjoint of this is a map K → C(X × I, Y ) ∼= C(X, Y )I which completes the
dotted arrow in the left-hand diagram.

In general it is difficult to identify the fibres of (3.3), although we find an exception to this
in the following corollary, where we can even forego the closedness assumption.

Corollary 3.3 Let X be a pointed space and assume that X is locally compact and that
the inclusion ∗ ↪→ X is a cofibration. Then for any pointed space Y , the evaluation map
ev : C(X, Y )→ Y , f 7→ f(∗), is a fibration with typical fibre C∗(X, Y ).

Example 3.1 Fix a pointed space X. The mapping space LX = C(S1, X) is called the
free loop space of X. The map ev : LX → X is a fibration with typical fibre ΩX. �

As special but important cases of Proposition 3.2 and Corollary 3.3 we have the following.

Corollary 3.4 Let X be space

1) For each t ∈ I, the evaluation map et : XI → X, l 7→ l(t), is a fibration.

2) The start-end evaluation map e0,1 : XI → X ×X, l 7→ (l(0), l(1)), is a fibration.

3) If X has a basepoint ∗, then the start point evaluation map e1 : PX → X is a fibration
with fibre ΩX.

Proof For the first part we apply Pr. 3.2 to the cofibration int : ∗ ↪→ I. For the second
part we use the cofibration ∂I ↪→ I. The last part comes from the pullback diagram

PX

e0

��

// XI

e0,1

��
X

(idX ,∗) // X ×X.

p
(3.5)
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Having established the fibration 3) above we can now prove the following, which was claimed
without proof in an earlier lecture.

Corollary 3.5 Every nonempty space X which is both path-connected and locally path-
connected is the quotient of a contractible space.

Proof Choose a basepoint ∗ ∈ X. Then e0 : PX → X is the required quotient. The map
e0 is a fibration by Corolalry 3.4, and so a quotient by Proposition 2.2. The total space PX
was shown to be contractible in Lemma 1.5 of the lecture pointed homotopy.

The last result of this section is the pointed analogue of Proposition 3.2.

Proposition 3.6 Let j : A ↪→ X be a closed cofibration. Assume that X,A are based spaces
and the map j preserves the basepoint. Then for any pointed space Y , the precomposition
map

j∗ : C∗(X, Y )→ C∗(A, Y ) (3.6)

is a fibration with fibre C∗(X/A, Y ).

Proof We check that the square

C∗(X, Y ) //

j∗

��

C(X, Y )

j∗

��
C∗(A, Y ) // C(A, Y )

p (3.7)

is a pullback. The right-hand map is a fibration by Pr. 3.2, and thus the left-hand map is a
fibration by Pr. 1.2. It is easy to identify the fibre.

4 Exercises

General Theory

1) Let p : E → B be a fibration over a pointed space B. Assume that B is simply-
connected and E is path-connected. Show that F = p−1(∗) is connetced.

2) Let p : E → B be a fibration over a path-connected space B. Let F be the fibre over
a chosen basepoint ∗ ∈ B and assume that the inclusion i : F ↪→ E is null homotopic.
Show that cat(E) ≤ cat(B).

Regular Fibrations A fibration allows for solutions to a given homotopy lifting problems
to be found. Often it is desirable to have some control over these solutions. One of the mildest
assumptions we can make in this regard is that of regularity, which is the requirement that
constant homotopies may be lifted to constant homotopies. We make this precise as follows.

Definition 4 A fibration p : E → B is said to be regular if it admits a lifting function
λ : Wp → EI with the property that λ(e, l) ∈ EI is a constant path whenever l ∈ BI is. �
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1) Let p : E → B be a fibration. Show that p is regular if and only if any homotopy
lifting problem

X
f //

in0

��

E

p

��
X × I

99s
s

s
s

s
H // B × I

(4.1)

admits a solution H̃ : X × I → E with the property that if x0 ∈ X is such that
t 7→ Ht(x0) is a constant path, then so is t 7→ H̃t(x0).

2) Let pr1 : B × F → B be the projection where F is nonempty. Show that pr1 is a
regular fibration.

3) Let p : E → B is a regular fibration and f : X → B is a map. Show that the pullback
f ∗E → X is a regular fibration.

4) Let B be a space. Assume that there is a map φ : BI → I such that φ(l) = 0 if and
only if l is constant. Show that any fibration p : E → B is regular.

5) Let p : E → B be a fibration over a metrisable space B. Show that p is regular.

6) Let S be the Sierpinski space. Show that the evaluation fibration e0 : SI → S is not
regular.

7) Let p : E → B be a regular fibration. Assume that A ⊆ B is a strong deformation
retract. Show that p−1(A) ⊆ E is a strong deformation retract.
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